
Secure Processor Design

Chris Fletcher

Fall 2017, 598 CLF, UIUC

Administrivia

• Course handout

• Website: http://cwfletcher.net/598clf.html

• Check for updates!

Course components & grading

• Paper reading (2 papers / week) - 35%
• Discussion lead for 1-2 papers – 10%

• 500 word summary + a discussion question / paper – 20%

• Participation – 5%

• SGX Lab - 15%

• Final project - 40%
• Proposal – 10%

• Checkpoint – 10%

• Final writeup (+ artifact if applicable) – 25%

• Final presentation – 5%

Course pre-requisites

• Computer organization course (CS 433)
• C, assembly, modern processor pipelines, virtual memory, virtualization
• If you don’t have CS 433, please send me an email

• Basic applied cryptography (CS 461)
• Encryption, Hashing, Integrity trees

• Other useful but not necessary
• ECE 385: Digital design (e.g., Verilog targeting FPGAs)
• CS 423: Operating systems
• Other low-level systems programming experience (drivers, kernel hacking)

TODO today

• See http://cwfletcher.net/598clf.html, announcements section

• Fill out doodle poll for final project presentation time preferences

• Send me (cwfletch@illinois.edu) an email with …
• [598CLF] <your name>

• Your research interests (e.g., microarchitecture, theoretical crypto)

• The top 5 papers you would like to present (see website for selection)

mailto:cwfletch@illinois.edu

Why hardware?

• Performance
• Not the right answer most of the time

• Closer to Physics

• Immutable roots of trust
• If bootstrapping succeeds, security follows

• The following is impossible w/ just crypto [*]
• Given policy A, encrypted input x:

• Evaluate function F on x and output result if and only if A(F, x) == true

(y encrypted under possibly different key)

[*] On the Impossibility of Cryptography Alone for Privacy-Preserving Cloud Computing; Marten van
Dijk, Ari Juels

This is an essential definition if any data
sharing is involved! (I.e., necessary for all

except simple ‘batch’ programs)

Timing attacks & isolation

• Function(secret)
• Mem[secret]
• if (secret) {…} else {…}
• … data-dependent code wrt secret …

• Problem for
• Symmetric/asymmetric crypto
• Other remote computations (genomics, taxes, etc.)

• Want to hide: timing of data-dependent behaviors, overall runtime

• Three broad approaches:
• Crypto
• Software + commodity HW
• Custom HW+

VM

Intel Skylake die

Timing attacks: Crypto approach

• Homomorphic encryption, Obfuscation,

Garbled circuits, etc.

• TCB = crypto assumption (e.g., LWE)

• Performance = horrific (most of the time)
• Extremely limited instruction set (x, + gates; mod 2)

• Cost per instruction (e.g., [*])
• bitwise +: polynomial addition (nano-micro seconds)

• bitwise x: polynomial multiplication + post-processing (milli seconds, or more)

[*] Multikey Fully Homomorphic Encryption and On - the -Fly Multiparty
Computation; Adriana Lopez-Alt, Eran Tromer and Vinod Vaikuntanathan

if (secret)
y = 5

else
y = 6

x x

+

5

secret

+ 6

1

y

y = Mem[secret]

“2-mux”

|Mem|-mux

mux

Mem[0] Mem[1]

secret

Mem[|Mem|-1]

y

Timing attacks: Software approach

• If all you have is a commodity x86 box

• TCB = cross-process isolation

• Performance = “constant factor” better than pure-crypto
• Still very limited set of ‘safe’ operations

• Instructions have data-dependent behaviors

• Processors have shared resources: pipeline, caches, etc

• Data-dependent behavior + shared resources = attackable

• Solution: “circuitize” program (similar to Crypto) [*]; aka “constant time programs”

[*] Raccoon: Closing Digital Side -Channels through Obfuscated Execution ; Ashay Rane, Calvin Lin, Mohit Tiwari

if (secret)
y = 5

else
y = 6

mul

5

secret

not 6

y

“2-mux” in
instructions

mul

add

Timing attacks: Hardware approach

• Can enforce fine-grain isolation
• Temporal

• Spatial

• Implemented as simple circuits
• Counters, FIFOs

• Execution time \propto longest path
• May have to “pad” paths

• NOT “program circuit size”

resource

Process 1 owns @ epoch 0
Process 2 owns @ epoch 1

resource

Process 1 owns

Copy of
resource

Process 2 owns

Controlled
precisely

if (secret)
y = 5

else
y = 6

x x

+

5

secret

+ 6

1

y

“2-mux”

Course objectives

• Enable you to do research in hardware security

• {Industry, Academia} x

{Threat models} x

{PL, HW, SW}

• When to use hardware vs. software vs. crypto (and combinations)

Course outline

• 0: Background [1.5 weeks]

• 1: Intel SGX, enclave programming [2 weeks]

• 2: Shared resource attacks & defenses [3 weeks]

• 3: Foundations – Authentication and randomness [1.5 week]

• 4: Isolation [1.5 weeks]

• 5: Software fault isolation [1.5 weeks]

• 6: Physical attacks & defenses [2.5 weeks]

• Lab: hands-on with SGX SDK [3 weeks]

• Final research project: open-ended [last 7-8 weeks]

Paper reading

• Paper reading (2 papers / week)
• Each paper will have a student lead presenter (rotating through class)

• 500 word summary + a discussion question

• for each paper from each student

• Due @ midnight before each class

• Send to cwfletch@illinois.edu: subj: [598CLF] <paper title>

mailto:cwfletch@illinois.edu

Final project (7-8 weeks)

• Original research project

• Goal: conference-submittable

• Solo or 2-3 person groups allowed; work / person = constant

• Deliverables
• Proposal

• Checkpoint (~1/2 through, mini-presentation, get early feedback)

• Final presentation

• Open-ended topics
• Using industrial secure processors, custom HW design, new SW-HW secure

system, attack demonstration, …

• Must have some hardware/secure processor angle

Secure processors in industry
(at end: context for rest of course)

Threat models & Applications

• Software adversary
• @ User level (Ring 3)

• @ Kernel (Ring 0)

• @ Bootloaders, firmware (Ring -2,-3)

• Hardware adversary
• Requires physical access

• Requires device on-prem

• Pre-fab adversary (HW trojans)

• State/rich adversary ($100K+)
• Processor de-capping

• Secure storage
• Keys, data

• E.g., PIN vault

• StatefulSecure computation
• Privacy, Integrity, Availability

• E.g., virtualizing consumer resources

• Proofs of X Ą hardware assumptions

Major Trends

• TCB shrinkage
Software stack (VM, OS, apps, drivers, other firmware management code) + HW

Ą

Apps + HW* * We haven’t shrunk HW TCB as much == big problem

• Virtualization/Concurrency
Trusted environment == separate “single-threaded” processor

Ą

Trusted environment == One of many virtually isolated processes sharing HW

with untrusted processes

Rough timeline of industry secure systems

• IBM 3848, Visa Security Module, IBM 4758 [1980s-2000s]

• ARM TrustZone [2000s-present]

• Trusted Platform Module (TPM) [2000s-present]

• Intel TPM+TXT / AMD SVM [2000s-present]

• Intel SGX [2010s-present]

• Related
• Intel Management Engine, AMD Platform Security Platform

History of tamper resistance

• Circa 1980s

• Public key crypto taking off, banking/other industries relying on long-
term keys and PIN codes

• Long term secrets Ą single leak = go out of business

• Tamper resistance
• E.g., Weight down code books on naval ships (back to ancient times)

• Earlier approach: make tampering obvious
• Power source disconnect on lid-open (e.g., IBM 3848, Visa security module)

• ‘Pot’ device in epoxy bath

• Later approach: make tampering destroy secrets / sound an alarm
• Wrap key storage in nichrome wire

IBM 4758 (and follow-ons)

• Stand-alone PCI device w/ GPP & crypto acceleration

• Main use: locking down keys

• FIPS level 4 (highest) tamper-resistance
• All of the above

• Key relocation to prevent SRAM key burn-in

• Temperature/radiation sensors to prevent cold boot-like attacks

• Aluminum enclosure/low pass filters to prevent power/EM-analysis

• Hence, attacked through software not hardware

• Secure boot (discussed later)
[*] http://www.research.ibm.com/people/s/sailer/publications/2001/ibm4758.pdf

API-Level Attacks on Embedded Systems; Mike Bond, Ross Anderson
Security Engineering; Ross Anderson

Abstract secure processor (“Trusted Execution”)

• Initialization: Remote attestation
• How does remote processor prove its identity to you [PKI - next lectures]

• How do you know what SW stack it is initialized with [Secure boot - next slide]

• Runtime: Isolation + Obfuscation
• When app starts running, how to maintain privacy + integrity of computation

• Recall: Given policy A, encrypted input x:
• Evaluate function F on x and output result if and only if A(F, x) == true

(y encrypted under possibly different key)

Trusted Platform Module

• “Commoditized IBM 4758”

• Standard LPC interface – attaches to commodity motherboards

• Passive/slave device

• Platform Configuration registers (PCRs)
• Extend(pcr_n, hash) { PCR[pcr_n] = HashFunc(PCR[pcr_n] || hash) }
• Quote(pcr_n) { return PCR[pcr_n] }

• Sealed storage
• Encrypt data (keys) w/ specific PCR value

• Non-volatile storage for attestation keys

• Issues: trusts BIOS, what is a good measurement(?), Reset attacks*

[*] TPM reset attack; http://www.cs.dartmouth.edu/~pkilab/sparks/

Secure boot

Extend()

Extend()

Extend()

Can now verify secure boot w/ signed Quote(),
Unseal dataFigure: Intel SGX Explained; Victor Costan and Srini Devadas

SHA-1(in): **
if Dict[in] == null:

Dict[in] = flip coins
return D[in]

** we wish

Intel TPM+TXT (& AMD SVM)

• Secure / insecure applications share same hardware

• Interacts w/ TPM to enable secure boot:
• Reset through trusted software: TXT gains control over entire chip
• Secure boot for guest virtual machine, TPM used for attestation

• Dynamic root of trust: measurements w/o reset

• Trust boundary: processor package + some trusted SW*
• No tamper resistance
• All secrets must be held on-chip

• Trusted SW* [all types have led to attacks]
• Responsible for performing reset (SINIT)
• Responsible for managing firmware (SMM)

[*] Attacking Intel TXT® via SINIT code execution hijacking;
https://invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf

Arm TrustZone

• Like TXT, except concurrent

• Chip virtuallybroken into normal and secure world via time-multiplexed
page tables (separate base registers)

• Secure world
• Un-restricted access to memory for privilege levels in normal world

• Normal world
• Conventional stack (processes, OS, etc)
• Calls into pre-defined secure world handlers via exceptions

• Trust boundary: processor package (same as TXT), no protection off-chip

• No official attestation / secure boot process

[*] TrustZone: Integrated Hardware and Software Security; Tiago Alves and Don Felton

Intel SGX

• Like TrustZone, except many secure worlds

• Applications can create 1+ user-level enclaves

• Enclave is like an opaque object which you can call into
• Memory address space is virtually isolated from all software OS+

• Memory is physically protected when written off-chip via encryption/integrity

• Trusts processor HW, enclave logic
• Not the OS

Intel ME, AMD PSP

• The real world is complicated and full of bad news

Rest of course

• Show course website

