
Refresher:
Applied Cryptography

(emphasis on common tools for secure processors)

Chris Fletcher

Fall 2017, 598 CLF, UIUC

Complementary reading

ÅIntel SGX Explained (ISE)

Victor Costan, SriniDevadas

https://eprint.iacr.org/2016/086.pdf

Pages 31-42

Read, use as reference. Don’t need to memorize.

This lecture also takes material from “Security Basics” by Ruby Lee (Hot
chips 2016)

https://eprint.iacr.org/2016/086.pdf

Paper presentations

ÅEmail me if
Å̧ ƻǳ ŘƻƴΩǘ ǎŜŜ ȅƻǳǊ ƴŀƳŜ ƻƴ ǿŜōǎƛǘŜ ŦƻǊ ǇǊŜǎŜƴǘŀǘƛƻƴ ϧ
Å̧ ƻǳ ƘŀǾŜƴΩǘ ŀƭǊŜŀŘȅ ƎƻǘǘŜƴ ŀƴ ŜƳŀƛƭ ŦǊƻƳ ƳŜ

ÅWe have run out of days!
ÅIf you aren’t assigned yet, select from “Additional reads” papers

ÅExpectations for presentation
ÅConference talk length (15-20 min) w/ slides
ÅSlides will be posted to website

ÅJohn Alsop on bat

Security objectives

ÅPrivacy Alice sends msgm to Bob.

Only Bob should be able to read m.

ÅIntegrity Alice sends msgsm1… mn to Bob.
ÅAuthenticity Bob receives msgp. Bob can verify p \ in m1… mn.
ÅFreshness Bob has received msgsp1 … pn. Bob can verify pi = mi.

ÅIdentity Bob wants to know if Alice is really Alice

ÅAvailability Does Bob ever see the n messages?

Symmetric cryptography

ÅEncryptkey(p) = ciphertext

ÅDecryptkey(c) = plaintext

ÅShared key (random bits) between encrypter/decrypter

Å“Key” issues: generating a “truly” random key, keeping the key secret

Privacy

One-time pad

ÅGoal: encrypt L bits
Åkey= [rand(0, 1) for i= 1…L]

ÅEncryptkey(biti) = biti Ꚛkeyi

ÅDecryptkey(biti) = biti Ꚛkeyi

ÅPerfect secrecy
ÅProblem: |key| = L

Basic mixing w/ XOR used by many modern cryptosystems
(symmetric and asymmetric)

Ꚛ= xor

Block ciphers (e.g., DES, AES)

ÅEncryptkey(.), Decryptkey(.) take s-bit inputs

ÅEncrypt arbitrary length message? Break into s-bit chunks. But how?

Pi = PjĄCi = Cj

When i != j, this is a problem

One-time pads

Ciphertext travels with auxiliary state

ÅRecall: need CBC or CTR for randomized encryption

ÅEncryptkey(p) = c = {Ctr, ciphertext}

ÅDecryptkey(c) = plaintext

ÅCtrsometimes called IV (initialization vector)
ÅSend increasing counter: sender must remember count

ÅSend random IV: must ensure IV is never re-used

Block cipher implementation

ÅBreak into rounds
Single round encryption:

Encryptkey(plaintext = {L0, R0}):
L1 = R0

R1 = L0 ꚚF(R0, key)
return {L1, R1}

Decryptkey(ciphertext = {L1, R1}):
R0 = L1
L0 = R1 ꚚF(L1, key)
return {L0, R0}

Decryptkey(Encryptkey({L0, R0}))
= Decryptkey({R0, L0 ꚚF(R0, key)})
= {L0 ꚚF(R0, key) ꚚF(R0, key), R0}
= {L0, R0}

Ꚛ= xore.g., Fiestelstructure

Behavior depends
on key, R0 is public =

attackable in HW

Once again,approximations
to One-time pads

Cryptographic hashing (e.g., SHA1 - SHA3)

ÅHash(p) = digest

Åp = arbitrarily long, digest length = ǻis system property

ÅOne way: If Hash(p) = digest: cannot determine p given digest and Hash(.)

ÅAvalanche:
Å“Bob Smith got an A+ in ELE386 in Spring 2005” Ą 01eace851b72386c46

Å“Bob Smith got an B+ in ELE386 in Spring 2005” Ą 936f8991c111f2cefaw

Ideally, we would have Random oracle model

Hash(p):
static Dict
if Dict [in] == null:

Dict [in] = flip ǻ fair coins
return D[in]

Message Authentication Codes

ÅKeyed hash Ą authenticity MAC = Hash(ciphertext|| key)

msg= {MAC, ciphertext}

ÅKeyed hash + nonce Ą freshness MAC = Hash(ciphertexti || key || i)

msg= {MAC, i, ciphertexti}

Privacy +
Authenticity/Freshness?

msg

|| = concatenation

w/o key, cannot forge MAC
w/ key, can check MAC against ciphertext

Nonce may be random or counter

Authenticated encryption

ÅCombine encryption scheme w/ extra mechanism for integrity

ÅDedicated modes (e.g., GCM) for

creating authentication tags

Encryption then MAC

Protecting memory

ÅPrivacy
ÅRandomized encryption

Store {Ctri, ciphertexti} tuples externally

ÅIntegrity
ÅAuthenticity

Store {MACi, Ctri, ciphertexti} tuples externally

ÅFreshness

Idea: Re-use Ctri as the nonce!

Totally broken. We storeCtri externally,

Adversary can give us any {MACj, Ctrj, ciphertextj}.

DRAM, Flash,
Disk, Cold storage

Secure processor
(trusted)

Fix: store all noncesinside processor
Problem: Too much storage
(~64bits / block of external memory)

Integrity trees

ÅMost common: Merkle tree = freshness w/ O(1) on-chip storage

Secure processor (trusted)

B0 B1 B2 B3 B4 B5 B6 B7

h0 h1 h2 h3 h4 h5 h6 h7
hi = Hash(Bi)

g3g2g1g0gi = Hash(h2i || h 2i+1)

f0 f1
fi = Hash(g2i || g 2i+1)

rootroot = Hash(f2i || f 2i+1) Check B0?

Public key cryptography (e.g., RSA, EC, lattice-based)

ÅTwo keys: private key (key_priv–keep secret),

public key(key_pub–safe to release publicly)

ÅEncryption
ÅEncryptkey_pub(p) = ciphertext
ÅDecryptkey_priv(c) = plaintext

ÅDigital signatures
ÅProof that msgcomes from whoever owns private key corresponding to key_pub
ÅSignkey_priv(msg) :=
ÅHash(msg); signature = Encryptkey_priv(h)
Åreturn {signature, msg}

ÅVerify step: Decryptkey_pub(signature) =? Hash(msg)

Mailbox location is public,
mailbox key is private

Public key crypto: RSA (functionality not security)

ÅFirst instance of public key crypto (circa 1978)
ÅChoose RSA modulus n
ÅWe will work in group (Z*n, *); Z*n ={x < n | gcd(x, n) = 1}
ÅChoose key_pub= e randomly, choose key_priv= d s.t.d*e ≡ 1 mod |Z*n|

ÅEncrypte(m) = c = (me)mod n
ÅDecryptd(m

e) = (me)d mod n
= m(1 + |Z*n|k) mod n By our definition of d
= m (mod n) By Euler’s theorem

ÅCrucial security issues: how to choose n so that attacker can’t get d

RSA issues

ÅRead out decryption key d via
shared resource attacks

ÅPadding schemes
ÅHow to get randomized

encryption? E.g., CBC, CTR modes.

ÅIf e is small, how to guarantee
wrap-around mod n.

Public key equivocation

ÅRecall … w/ digital signatures:
ÅProof that msgcomes from whoever owns private key corresponding to key_pub

ÅProblem: How do you know who key_pubbelongs to?

ÅKey parties, https://keybase.io/

ÅWeb of trust:
ÅPerson i posts certificatei = {name/etci, key_pubi}

ÅPerson j signs certificatei via key_privj
ÅIf you trust person j, you can now trust certificatei

Many people can sign (endorse) certificatei to improve confidence.

ÅProblem: Trust in web of trust is not black and white

ÅPKI: endorsement = chain of trust back to single key

Public key infrastructures (PKIs)

Hardware security
module (HSM)
e.g., IBM 4758

Root Certificate authority (RCA)

Certificate authorities (CAs)

key_privRCA

key_pubRCA

key_privCA_0, key_privCA_1, …
key_pubCA_0, key_pubCA_1, …

Chain of trust:
certificatei = {name/etci, key_pubi}

certificatei signed with key_privCA_1

key_pubCA_1 signed with key_privRCA

key_pubRCAboxed with your machine.

Secure channels

ÅAsymetriccrypto is slow, symmetric crypto is fast

ÅIdea: establish key (symmetric) via Encryptkey_pub(key)

ÅNeed to verify key_pubvia PKI first

Privacy +
Authenticity/Freshness

msg

Putting it together: Secure Processor Init

ÅInitialization: Remote attestation
ÅSecure boot
ÅComputing a measurement (cryptographic hash) of software running on secure processor

ÅPKI
ÅVerifying that the measurement comes from the expected secure processor

Figure: Intel SGX Explained; Victor Costanand SriniDevadas

SHA-1 = cryptographic hash function
Recall: Hash(p) = digest, one-way

Secure boot: Creating the measurement

PKI: Verifying the measurement

