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+ Benefits everyone
- Sensitive data
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This paper

• Proposes a solution for secure multi-party ML

• Explores a different design space:
• Trusted processors on the cloud

• Techniques for hardening code

• Protects against strong attackers

• Results: Low overhead on Intel SGX machines
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Attack Model

• Malicious parties

• Shared resources

• Memory & Network observer

• Hardware attackers (on mem bus)

• Assumptions:
• Code does not leak secrets

• Do not consider leakage through 
time or power channels
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Protection Layers

• Data: Encryption
• Input and output are encrypted

• Data outside of enclave is encrypted

• Code: Secure Enclave
• Trusted processors

• Data accesses: Side channel protection
• Memory, disk, and network are accessed obliviously



Secure Enclaves with Intel SGX

• Isolated execution in enclaves

• CPU controls access to enclave memory (ensures integrity)

• Per-CPU private key can attest that an enclave runs on a real Intel CPU



Memory Side-channel

• Security guarantee:

Given two inputs and a memory trace, one cannot distinguish which 
one was executed (data oblivious)

• Memory accesses “do not appear” to depend on secrets, but depend 
on public information (eg number of instances, number of labals)

• Assumption: register-to-register manipulation is data oblivious
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In assembly:

ogreater

omove

oless

oequal

oget: get the ith array element (hide i)

Q. Why not oblivious RAM?
A1: Enclave memory is small (not log n)
A2: For small arrays scanning is faster
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Optimized Oblivious Array Access

…..Cache

Cache line: 64 bytes

Read 4 bytes obliviously from 512 bytes (8 x 64 bytes)vpgatherdd
AVX2 vector register
(8 components)
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Data Sampling

ML Model

Update model

Take a subset  update your model
Iterate over a small subset of data

Sample with replacement

1. Not secure if one learns the model
2. Not efficient (encrypt/decrypt)
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Streaming is more efficient than random access
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Things we want to hide: 
1. How we evaluate the comparison at each node
2. Which node we actually traverse (not the level)



Matrix Factorization

• Update U: accesses to V depend on secret info

• Update V: accesses to U depend on secret info
U

V



Matrix Factorization

• Update U: accesses to V depend on secret info

• Update V: accesses to U depend on secret info

• Idea: interleave U and V to avoid random access

• U and V are updated via linear scan

… ……



Experimental Setup

Prototype & Hardware:
• Quad-core Intel Skylake processor, 8GB RAM
• Enclave memory: 94MB
• C/C++ with Intel SGX SDK

Data:
• UCI Machine Learning Repo (6.5K – 2.25M #data records)
• Binary encoding
• Encryption: hardware accelerated AES-GCM
• Process in batches in streaming mode
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Data Oblivious?

Provably-secure algorithms:

The trace depends only on public information (input, output size)

Validation of implementation:

Collected traces at cache-line granularity with Intel Pin Tool

Also experimentally validated memory accesses



Conclusion

• Paper explores the design space for multi-party machine learning

Trust Model vs Performance vs Security Guarantees

Trusted processors SGX + AES: Optional side-channel

20% average overhead protection

Much faster than pure

cryptographic solution



Discussion Questions

• Is this limited to machine learning algorithms?

• Side-channel attacks?

• For apps with little computation, is this worth it?

• Extension: This is a centralized method (on the cloud). Is there a 
possible decentralized algorithm that can augment it?


