
Oblivious Multi-Party Machine 
Learning on Trusted Processors

Presented by: Abdulrahman Mahmoud

Date: 10/12/2017

Slides liberally borrowed from paper authors







+ Benefits everyone
- Sensitive data



Cloud



Female

> 35 > 35

diabetes diabetes

yes

yes

no

no

Likelihood of heart disease

Age: 25
Gender: Male
Diabetes: N



Female

> 35 > 35

diabetes diabetes

yes

yes

no

no

Likelihood of heart disease

Age: 25
Gender: Male
Diabetes: N

Female

> 35 > 35

diabetes diabetes

yes

yes

no

no

Likelihood of heart disease

Age: 25
Gender: Male
Diabetes: N

Heart Disease: No



Female

> 35 > 35

diabetes diabetes

yes

yes

no

no

Likelihood of heart disease

Age: 25
Gender: Male
Diabetes: N

Female

> 35 > 35

diabetes diabetes

yes

yes

no

no

Likelihood of heart disease

Age: 25
Gender: Male
Diabetes: N

Heart Disease: No



This paper

• Proposes a solution for secure multi-party ML

• Explores a different design space:
• Trusted processors on the cloud

• Techniques for hardening code

• Protects against strong attackers

• Results: Low overhead on Intel SGX machines



ML code App

Operating System

Hypervisor

Hardware

Large attack surface



ML code App

Operating System

Hypervisor

Hardware

Isolate using secure processor



ML code App

Operating System

Hypervisor

Isolate using secure processor



Attack Model

• Malicious parties

• Shared resources

• Memory & Network observer

• Hardware attackers (on mem bus)

• Assumptions:
• Code does not leak secrets

• Do not consider leakage through 
time or power channels

ML code App

Operating System

Hypervisor



Protocol Overview
App

Operating System

Hypervisor

Agree on ML code1

ML code



Protocol Overview
App

Operating System

Hypervisor
ML code

Upload the code2



Protocol Overview
App

Operating System

Hypervisor

ML code

Upload the code2



Protocol Overview
App

Operating System

Hypervisor

ML code

Verify enclave setup3



Protocol Overview
App

Operating System

Hypervisor

Send data and keys4

ML code



Protection Layers

• Data: Encryption
• Input and output are encrypted

• Data outside of enclave is encrypted

• Code: Secure Enclave
• Trusted processors

• Data accesses: Side channel protection
• Memory, disk, and network are accessed obliviously



Secure Enclaves with Intel SGX

• Isolated execution in enclaves

• CPU controls access to enclave memory (ensures integrity)

• Per-CPU private key can attest that an enclave runs on a real Intel CPU



Memory Side-channel

• Security guarantee:

Given two inputs and a memory trace, one cannot distinguish which 
one was executed (data oblivious)

• Memory accesses “do not appear” to depend on secrets, but depend 
on public information (eg number of instances, number of labals)

• Assumption: register-to-register manipulation is data oblivious



Overview

Decision trees (prediction)

Support Vector Machines (supervised)

Neural Network (supervised)

Matrix Factorization

K-Means clustering (unsupervised)

1. Data Oblivious Primitives: libO

2. Sampling technique for training

3. Algorithmic changes

Side-Channel Protection



Overview

Decision trees (prediction)

Support Vector Machines (supervised)

Neural Network (supervised)

Matrix Factorization

K-Means clustering (unsupervised)

1. Data Oblivious Primitives: libO

2. Sampling technique for training

3. Algorithmic changes

Side-Channel Protection



Overview

Decision trees (prediction)

Support Vector Machines (supervised)

Neural Network (supervised)

Matrix Factorization

K-Means clustering (unsupervised)

1. Data Oblivious Primitives: libO

2. Sampling technique for training

3. Algorithmic changes

Side-Channel Protection



Library of oblivious primitives libO

In assembly:

ogreater

omove

oless

oequal

oget: get the ith array element (hide i)



Library of oblivious primitives libO

In assembly:

ogreater

omove

oless

oequal

oget: get the ith array element (hide i)

Q. Why not oblivious RAM?
A1: Enclave memory is small (not log n)
A2: For small arrays scanning is faster



Optimized Oblivious Array Access

…..Cache

Cache line: 64 bytes

AVX2 vector register
(8 components)



Optimized Oblivious Array Access

…..Cache

Cache line: 64 bytes

Read 4 bytes obliviously from 512 bytes (8 x 64 bytes)vpgatherdd
AVX2 vector register
(8 components)



Overview

Decision trees (prediction)

Support Vector Machines (supervised)

Neural Network (supervised)

Matrix Factorization

K-Means clustering (unsupervised)

1. Data Oblivious Primitives: libO

2. Sampling technique for training

3. Algorithmic changes

Side-Channel Protection



Data Sampling

ML Model

Update model

Take a subset  update your model
Iterate over a small subset of data

Sample with replacement



Data Sampling

ML Model

Update model

Take a subset  update your model
Iterate over a small subset of data

Sample with replacement



Data Sampling

ML Model

Update model

Take a subset  update your model
Iterate over a small subset of data

Sample with replacement

1. Not secure if one learns the model
2. Not efficient (encrypt/decrypt)



Data Sampling

Take a subset  update your model
Iterate over a small subset of data

Sample WITHOUT replacement

Sh
u

ff
le

 R
e

co
rd

s

ML Model



Data Sampling

Take a subset  update your model
Iterate over a small subset of data

Sample WITHOUT replacement

Sh
u

ff
le

 R
e

co
rd

s

ML Model

Streaming is more efficient than random access



Overview

Decision trees (prediction)

Support Vector Machines (supervised)

Neural Network (supervised)

Matrix Factorization

K-Means clustering (unsupervised)

1. Data Oblivious Primitives: libO

2. Sampling technique for training

3. Algorithmic changes

Side-Channel Protection



Oblivious Decision Trees

Female

> 35 > 35

diabetes diabetes

yes

yes

no

no

Likelihood of heart disease

Things we want to hide: 
1. How we evaluate the comparison at each node



Oblivious Decision Trees

Female

> 35 > 35

diabetes diabetes

yes

yes

no

no

Likelihood of heart disease

Things we want to hide: 
1. How we evaluate the comparison at each node
2. Which node we actually traverse (not the level)



Matrix Factorization

• Update U: accesses to V depend on secret info

• Update V: accesses to U depend on secret info
U

V



Matrix Factorization

• Update U: accesses to V depend on secret info

• Update V: accesses to U depend on secret info

• Idea: interleave U and V to avoid random access

• U and V are updated via linear scan

… ……



Experimental Setup

Prototype & Hardware:
• Quad-core Intel Skylake processor, 8GB RAM
• Enclave memory: 94MB
• C/C++ with Intel SGX SDK

Data:
• UCI Machine Learning Repo (6.5K – 2.25M #data records)
• Binary encoding
• Encryption: hardware accelerated AES-GCM
• Process in batches in streaming mode



Experimental Setup

Prototype & Hardware:
• Quad-core Intel Skylake processor, 8GB RAM
• Enclave memory: 94MB
• C/C++ with Intel SGX SDK

Data:
• UCI Machine Learning Repo (6.5K – 2.25M #data records)
• Binary encoding
• Encryption: hardware accelerated AES-GCM
• Process in batches in streaming mode



K-Means CNN SVM LU Decision Trees

x 
b

as
el

in
e
Performance on Intel Skylake CPU

SGX+AES SGX+AES+Oblivious

1.99

2.99

1.01 1.03 1.07 1.08 1.07

115

1.22

31.1



Data Oblivious?

Provably-secure algorithms:

The trace depends only on public information (input, output size)

Validation of implementation:

Collected traces at cache-line granularity with Intel Pin Tool

Also experimentally validated memory accesses



Conclusion

• Paper explores the design space for multi-party machine learning

Trust Model vs Performance vs Security Guarantees

Trusted processors SGX + AES: Optional side-channel

20% average overhead protection

Much faster than pure

cryptographic solution



Discussion Questions

• Is this limited to machine learning algorithms?

• Side-channel attacks?

• For apps with little computation, is this worth it?

• Extension: This is a centralized method (on the cloud). Is there a 
possible decentralized algorithm that can augment it?


