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Outline

What is ParalLearn?

— Introduction: Terminology and objective
— Motivation: Learning the structure of cell signaling networks
— Algorithm and architectural overview

Results
— Design {scalability, flexibility}
— End-to-End runtime

Sources of speedup
Closing
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Introduction

Paralearn is a specialized computer for
conducting research on interaction networks

e We use software for: G °

1. Control infrastructure

2. Less computationally intensive steps G
e We use hardware (FPGAs) for:

Accelerating the algorithm kernel G

4 node interaction network:
A, B, C, D are nodes
A and C are parents of B
{A, C}is the parent set of B
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Cell Signaling Networks

Goal:Gi ven fl ow cytometry *‘CyTof’' dat a,
* Flow Cytometry e Cell Signaling Networks
— 5Fa4F Ay GKS F2N)X 2 F- GtNidtubesthat model
quantitative observations protein signaling pathways
— Measurement of proteins & other — Modeling perturbations to a network can
components inside cells help uncover the cause of human disease
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Signal Transduction Networks
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All proteins interact
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in a complex network
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Bayesian Networks

Sprinkler Rain

e . STAST DbSi
— Directed acyclic graph 0o1.
— { GNX¥zOGdzNBE Sy O2RSaX

e Conditional independence
e Causal relationships

Parent Set for node V

Grass Wet

P(\/]_!---,VN) - P(\/ |.) Sp;i;ker R;in '5 :I|-:
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e Bayesian Score ¥ $ :89 :(])-1

— A basis for comparing Bayesian Structures

— Based on prior belief and observations
Experimental data

P(DQ = P(G) P(D|G)

Graph

Courtesy of Tom Griffiths (U.C. Berkeley)

Prior probablllty
June 2nd ParaLearn (ICS 2010) 6



Introduction Approach Architecture Results Optimizations Closing

Macro Approach

Goal: Determine which network best explains the data

e End-to-end computation
(1) Pre-processor: Calculate local scores per parent set
2) ah NRSNJ { I YLIX SNE YscofingoudSNNgarightm ketnd)S K A 3 K
(3)ADNJ LIK { I YL SNEY 9EGNI OG 3INJ LKA FNEP
(4) Post-processing: high-level analysis and normalization

e Strategy
— Implement steps (1) and (4) in software
— Parallelize (and merge) steps (2) and (3) in hardware
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Kernel Considerations

e Learning graph structure is an NP-hard problem

— Searchspacegrowssuper-SELR Y SYGALIfte& gAGK GKS 3IAN) LIKQA
— Multiple local optima, encoding best-solutions, may exist

4 453
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e Order sampler: |order space| < |graph space| e a/ al al YRedtaksy W>2 dzY L] 2 |

Likely
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\J wced Restart

> (2 (8) ()fo)
1 Order 2+ Graphs
Unlikely, but possible
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Micro Approach

Algorithm FPGA Implementation

Software Pre-Processing (initialization)

scordB] D)=5 a LocalScor¢V,,P.;D,G) o A /\

i=1 PiiPg

Scoring Core

Block RAM

A A A A /ﬁ
AU A O Port A Port B

score(Order  order ):

orderScore =0
nScore = Integer.MIN_VALUE
For each node (n):
For each parent set ( ps):
If psi s Acompatibled with
nScore =loge 'S [P psl  nScore
orderScore = orderScore  + nScore
nScore = Integer.MIN_VALUE :
é\: v From Node i-1

return {order, orderScore } [MCMC Controller }_é,yiooo: ® (e

/\J/\)/\J/\J Threading
G): 39' '} Cross-Thread
o Cross-Port
3 )
\‘(D | Cross-Core
Node i+1 Node i
Local Orderi+l

>
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Scores Platform
Interconnect
If Network

MCMC
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RCBIOS
Harness
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Graph
Sampler

Scoring Core

From MCMC Controller

o]

Next Previous

Neighbor Neighbor
L
Node

Xilinx Virtex-5
LX155T FPGA

29 node system
3 scoring cores per node
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Block RAM

Scoring Core

Next Core

Key
o Scoring Data
] ] One node
O Scoring Logic
Point where Proposed
Score is produced
e Proposed Order

10




Introduction Approach

Abstract View vs. Actual Implementation
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Results

Optimi
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RCBIOS ¢ Part of GateLib

— Scalable FPGAa A Software communication

— Composed of Verilog, Java, and Apache ANT

Architecture

System Infrastructure

Results
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Hardware : Software
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FPGA Array

da/ al/ aSakKé

Idea: Split larger problems across multiple FPGAs BEE3 BEE3
* While maintaining the base design Scores

Additional Infrastructure Nu ___________________________________ fla:v_e_ _____ N S;veA
(1) Inter-chip ring connections Orders E
(2) Inter-board Aurora high-speed links SN . — - Ee——— - - e
(3) Platform Interconnect Network (PLiN) 1 p— Sla:e e FPG/i

built on (1) and (2)

BEE3 BEE3
Scores - -
— Slave — Slaveé
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Scores
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Performance
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Results Optimizations

Scalability

Theme: Given a fixed network, vary hardware resources

CyTof Network

— 22 nodes
— 4indegree A 7547 parent sets per node
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Flexibility

Theme: Given fixed hardware, vary the network

Problems FPGA block RAM is limited FPGA CAD tools are slow

Solutions  Limit the indegree of the explored graphs Add hardware overhead to accommodate
any network up to a given size
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= = |[ndegree=3 L
90000 - Indegree=4 - =- General bitfile
80000 - 4x FPGAs 200,000 - — Specialized bitfile
70000 -
60000 - 150,000 -
Z e
Q- 50000 A (@)
40000 A 100,000 - -------“--~~
30000 -
20000 A 50,000 -
10000 - -
- -
- =
0 +—— -'P'_'-_gl- = T T 1 0 T T T T 1
8 16 24 32 40 16 22 24 32 40
Network Size Supported Network Size

June 2nd ParaLearn (ICS 2010) 15



Introduction Approach Architecture Results Optimizations Closing

OPS

June 2nd

Scalability + Flexibility

Theme: Given different networks, vary hardware resources

0000 1
* ——8 Nodes, PPN = 99

-=16 Nodes, PPN = 1941
—==22 Nodes, PPN = 7547
===24 Nodes, PPN = 10903
-==32 Nodes, PPN = 4992
—==40 Nodes, PPN = 9920

400000 -

350000 -~

300000 -

250000 -

200000 -

150000 -

10 SCs per Node
8 SCs per Node

9 SCs per Node

100000 -

50000 -

1 11 21 31 41 51 61 71 81 91
Scoring Cores per Node

16



Introduction Approach Architecture Results Optimizations Closing

End-to-End Runtime

a¢CAYS U 2thigihdesK & €

1. Pre-processing

2. FPGAload time

3 FPGA run time (includes order and graph sampling)
4 Post-processor (overhead is hidden)

Over the 22 node CyTof data, varying the number of restarts

Computation Step GPP FPGA GPP FPGA GPP FPGA

Pre-processing (Multinomial) 185 a €
Pre-processing (Linear Gaussian) 50 a €
Load time 0 4.5 ae€
Order sampler 5.2 0.44 44.6 22.1 78.8 44.15
Graph sampler 0.85 0 18.8 0 31.3 0
Total 6.05 4.94 63.4 26.6 110.1 48.65

* Times in seconds
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Sources of Speedup & Caching
Considering FPGA and GPP implementations,

which architecture benefits in what ways? Baseline GPP 48500
2 § K | @S 02 y'é)\ RS NBR X Optimized GPP 44.6
FPGA 4x 22.1

bitwise optimizations, threading/parallelism,
fixed vs. floating point, and caching

Caching
Insight: order N A score M

— Used by both GPU & GPP implementations m

— Can be made at an order or node granularity Baseline FPGA 22.1

Caching analytic model Order cache 21.98

— DRAM-based order and node caches, modeling: Meee e —

hash function, DRAM latency, hit rate, Both caches 8.53
all-or-nothing node cache hits Speedup 2.59x
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Performance Optimizations

* Pre-processing on FPGA
—OMU -LONBPNFS aaAy3é KIFa 0S0O2YS ySg o
—al Ll a[ 20t a02NK¢ 3IASYSNIOGA2Z2Yy (2
—¢CNJ YALRZNI G20aSNWFOGAZ2Yyasg RFEGE 02
Insight: Observation files are small, score files are large
e Additional parallelism
— FPGA load time can overlap with the pre-processing step
(hides load time)
~-¢KS a/al/ O2yUGNRfftSNIOIFIY 0SS WiKNE
(hides result accumulation overhead)
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Closing

This work is an example of how a hand optimized, low- level
FPGA design can lead to significant performance and power
benefits over conventional processors and GPUs

Algorithm performance is having immediate impact on
work done by Biologists who are studying STNs

P

hdzNJ | LILINR I OKQa O2z2aidy fI NBS

Our group is currently working on high-level programming abstractions
that will ease development effort, ideally without losing efficiency
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